Bounding the burning number of some distance-regular graphs

Hajime Tanaka

(joint work with Norihide Tokushige)

Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

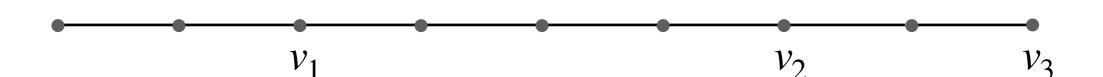
October 16, 2025
Algebraic Graph Theory and Applications
BIRS 25w5432, Banff, Canada

Norihide Tokushige (U. of the Ryukyus)

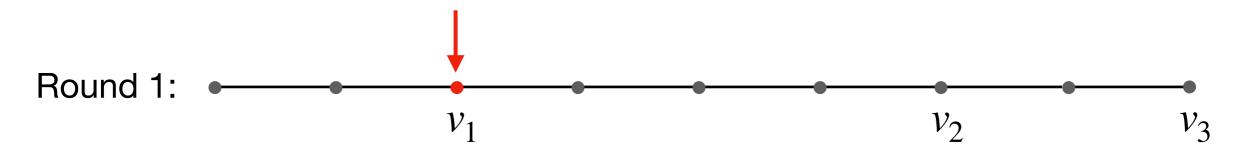
- He is an expert on Erdős-Ko-Rado-type theorems.
- I have written four papers with him:
 - 1. A semidefinite programming approach to a cross-intersection problem with measures, 2017 (also with Sho Suda).
 - 2. Extremal problems for intersecting families of subspaces with a measure, 2025.
 - 3. A semidefinite programming approach to cross 2-intersecting families, arXiv:2503.14844.
 - Burning numbers via eigenpolytopes Hamming graphs, Johnson graphs, and halved cubes, arXiv:2508.17559.

- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at **round** i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.

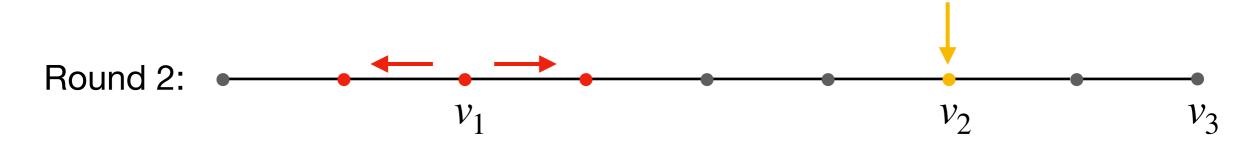
- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at round i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.



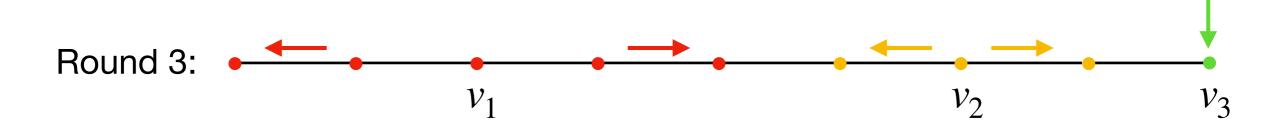
- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at **round** i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.



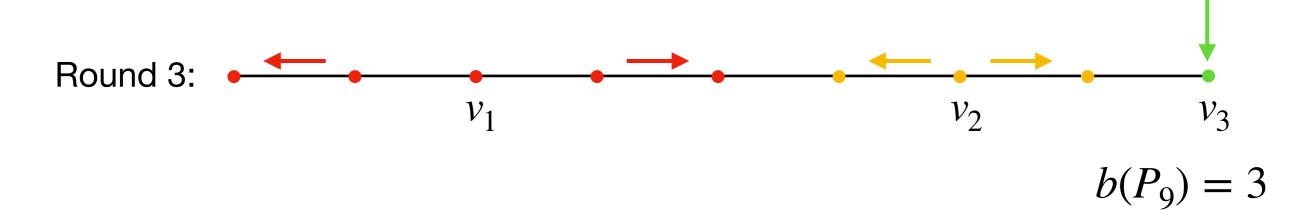
- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at round i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.



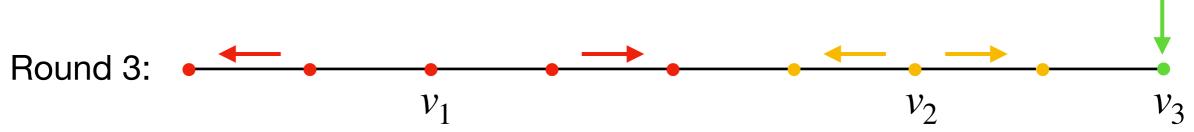
- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at round i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.



- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at round i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.

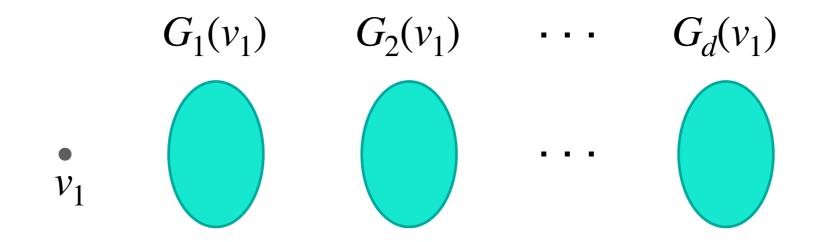


- ullet G = (V, E): a finite connected graph
- A sender prepares a sequence of vertices $v_1, v_2, ... \in V$, called a burning sequence.
- lacktriangle The sender sends a message to v_i at **round** i.
- Every vertex that received the message transmits it to its neighbors at the next round.
- The **burning number** b(G): the minimum number of rounds (over all burning sequences) so that all vertices receive the message.

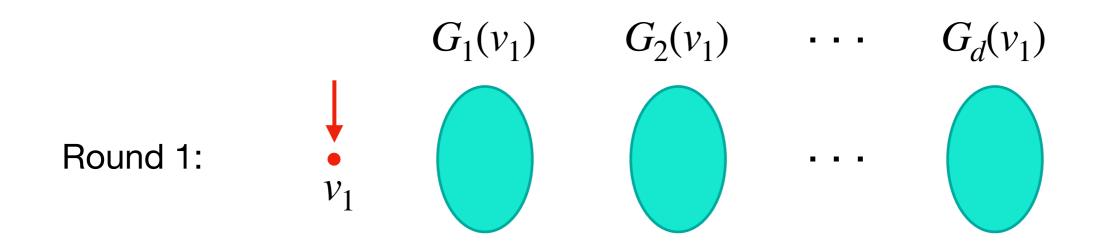


• More generally, $b(P_n) = b(C_n) = \lceil n^{1/2} \rceil$. $b(P_9) = 3$

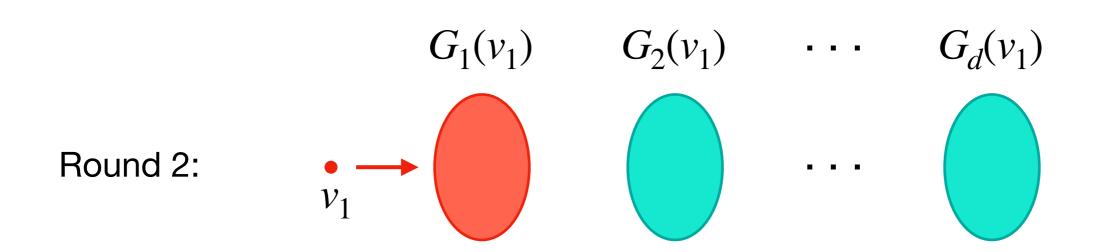
- lacksquare ∂ : the path-length distance on V
- $G_i(v) = \{u \in V : \partial(u, v) = i\} \ (v \in V, i = 0, 1, 2, ...)$
- \bullet d = diam(G): the diameter of G



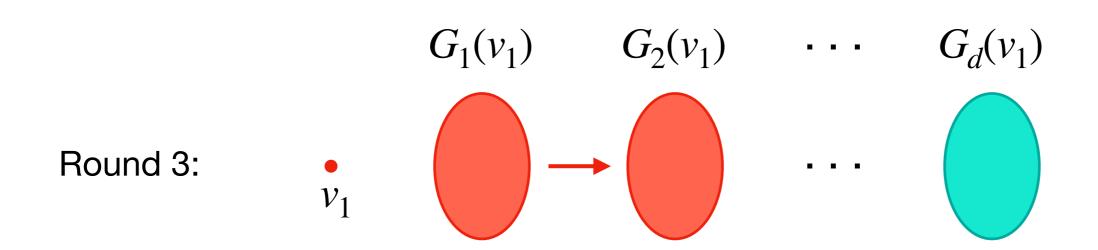
- lacksquare ∂ : the path-length distance on V
- \bullet d = diam(G): the diameter of G



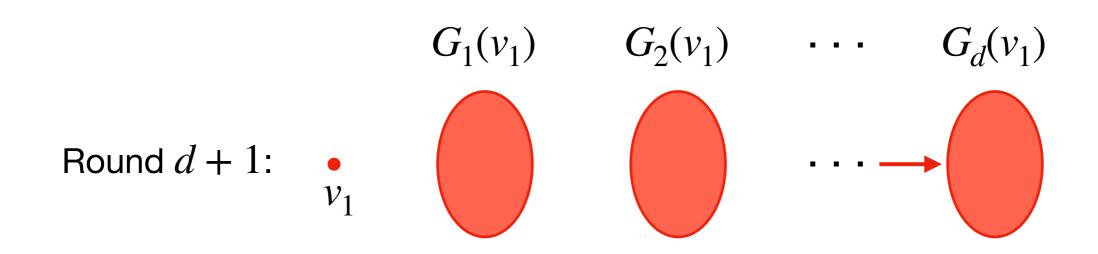
- lacksquare ∂ : the path-length distance on V
- \bullet d = diam(G): the diameter of G



- lacksquare ∂ : the path-length distance on V
- \bullet d = diam(G): the diameter of G



- lacksquare ∂ : the path-length distance on V
- \bullet d = diam(G): the diameter of G



- lacksquare ∂ : the path-length distance on V
- $G_i(v) = \{u \in V : \partial(u, v) = i\} \ (v \in V, i = 0, 1, 2, ...)$
- \bullet d = diam(G): the diameter of G

Lemma. $b(G) \leq d+1$.

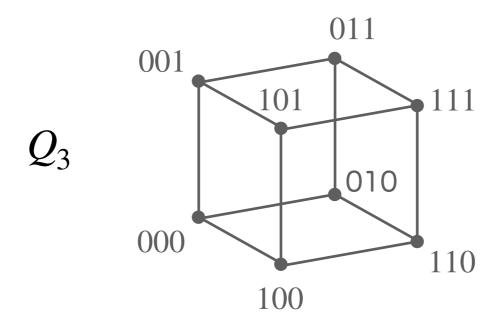
Burning Number Conjecture (Bonato et al., 2016).

• $b(G) \leq \lceil n^{1/2} \rceil$, where n = #V.

Example. The BNC holds for P_n and C_n .

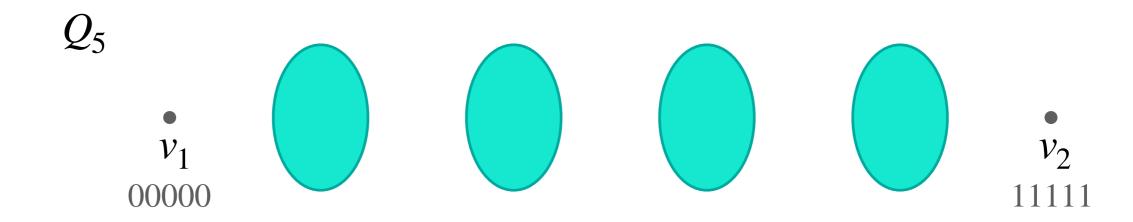
Example. The BNC holds whenever G has a Hamiltonian path.

- Alon (1992) determined the burning number of the hypercubes.
- $ullet Q_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$



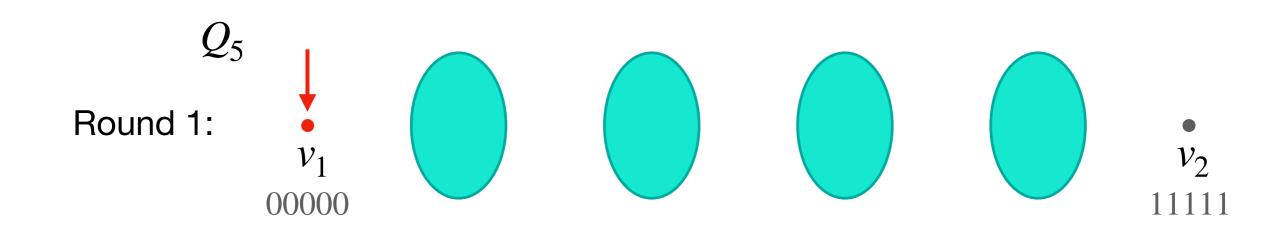
- Alon (1992) determined the burning number of the hypercubes.
- $ullet Q_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$

Theorem (Alon, 1992). $b(Q_d) = \lceil d/2 \rceil + 1$.



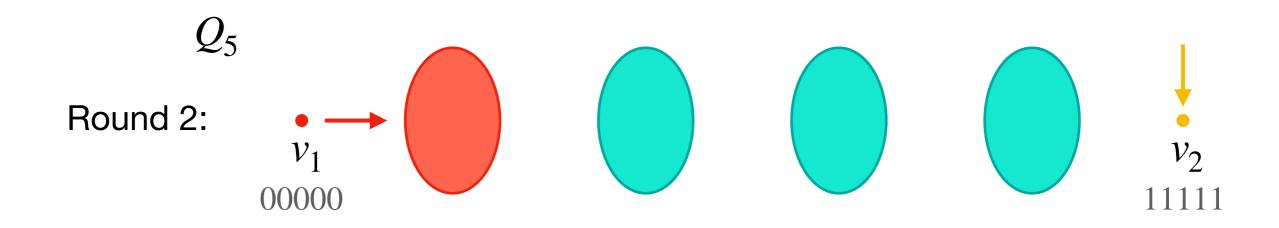
- Alon (1992) determined the burning number of the hypercubes.
- $extbf{Q}_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$

Theorem (Alon, 1992). $b(Q_d) = \lceil d/2 \rceil + 1$.



- Alon (1992) determined the burning number of the hypercubes.
- $ullet Q_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$

Theorem (Alon, 1992). $b(Q_d) = \lceil d/2 \rceil + 1$.



- Alon (1992) determined the burning number of the hypercubes.
- $ullet Q_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$

Theorem (Alon, 1992). $b(Q_d) = \lceil d/2 \rceil + 1$.

Round 3:
$$\begin{array}{c} Q_5 \\ \vdots \\ v_1 \\ 000000 \end{array}$$

- Alon (1992) determined the burning number of the hypercubes.
- $ullet Q_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$

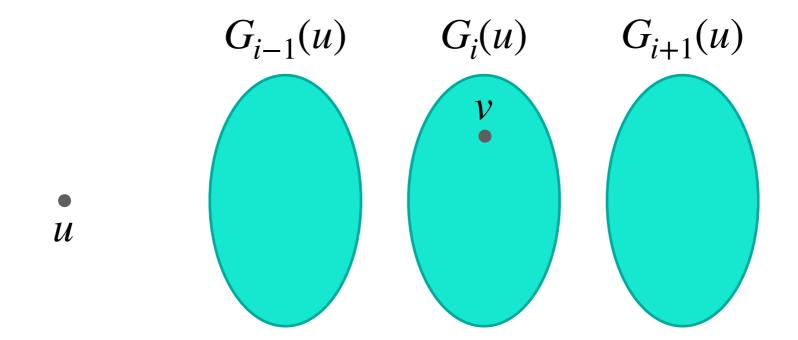
Theorem (Alon, 1992). $b(Q_d) = \lceil d/2 \rceil + 1$.

- Alon (1992) determined the burning number of the hypercubes.
- $ullet Q_d = (V, E)$: the d-dimensional hypercube
- $V = \{0,1\}^d$
- $\bullet (\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon_1', \epsilon_2', ..., \epsilon_d') \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon_i'\} = 1$

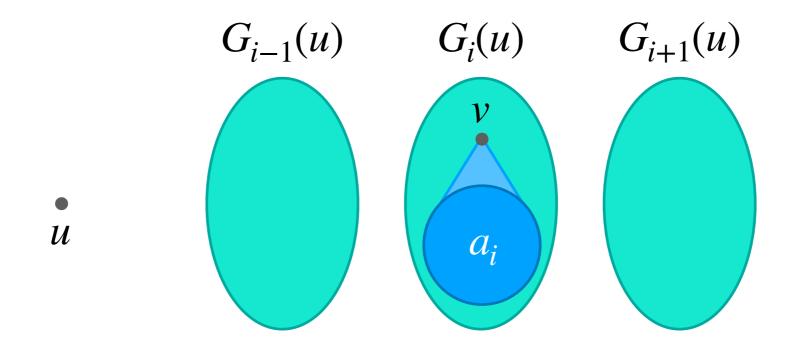
Theorem (Alon, 1992). $b(Q_d) = \lceil d/2 \rceil + 1$.

- $b(Q_d) \leq \lceil d/2 \rceil + 1$: Choose antipodal vertices v_1 and v_2 .
- $b(Q_d) \ge \lceil d/2 \rceil + 1$: Alon used a geometric method.

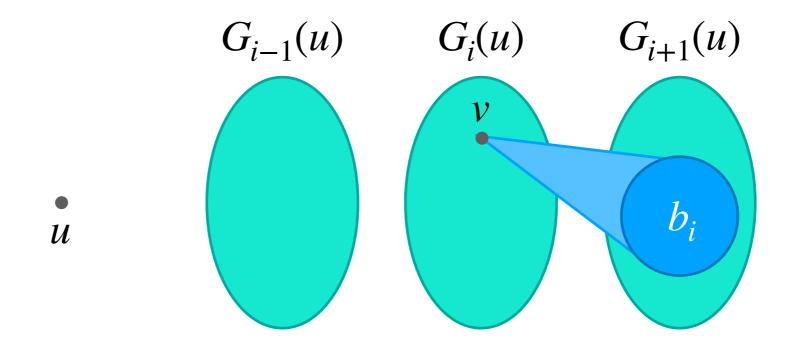
We assume G is **distance-regular** with diameter d.



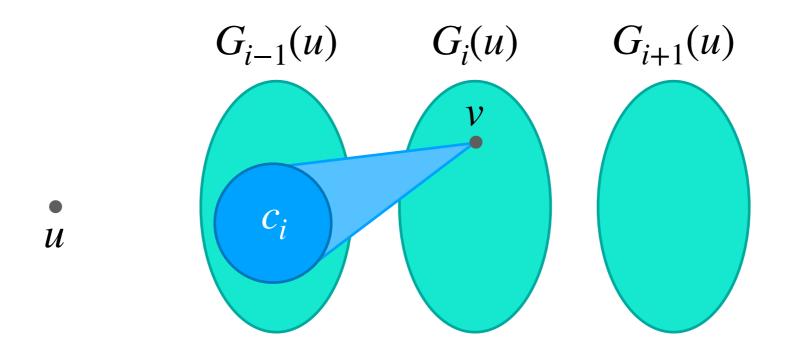
We assume G is **distance-regular** with diameter d.



We assume G is **distance-regular** with diameter d.



We assume G is **distance-regular** with diameter d.



Examples. \bullet the hypercubes Q_d \bullet the cycles C_n

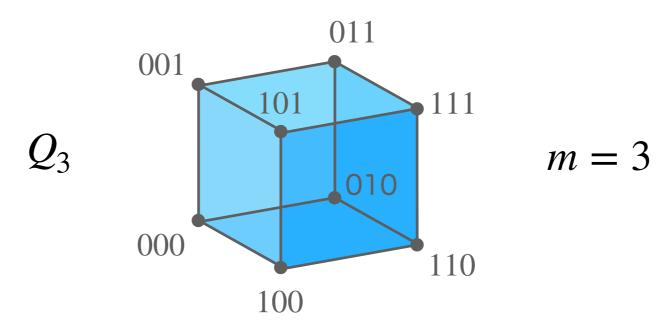
Remark. G is regular with valency b_0 .

Eigenpolytopes of DRGs (Godsil, 1998)

 $A \in \mathbb{R}^{n \times n}$: the **adjacency matrix** of G

$$A_{uv} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases} \quad (u, v \in V)$$

- \bullet $\theta_0 (=b_0) > \theta_1 > \cdots > \theta_d$: the distinct eigenvalues of A multiplicity 1
- ullet $E=E_{ heta_1}$: the orthogonal projection onto the eigenspace for $heta_1$
- $conv\{Ev:v\in V\}\subset E\mathbb{R}^n\cong\mathbb{R}^m: \text{ the eigenpolytope of }G$ $v^{\text{th}} \text{ column of }E$ multiplicity of θ_1

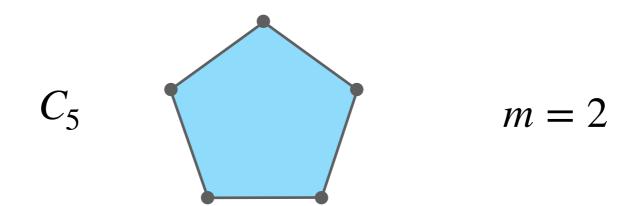


Eigenpolytopes of DRGs (Godsil, 1998)

 $lackbox{0.5}{\circ} A \in \mathbb{R}^{n \times n}$: the adjacency matrix of G

$$A_{uv} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases} \quad (u, v \in V)$$

- \bullet $\theta_0 (=b_0) > \theta_1 > \cdots > \theta_d$: the distinct eigenvalues of A multiplicity 1
- ullet $E=E_{ heta_1}$: the orthogonal projection onto the eigenspace for $heta_1$
- $\text{oconv}\{Ev:v\in V\}\subset E\mathbb{R}^n\cong\mathbb{R}^m: \text{the eigenpolytope of }G$ wth column of E multiplicity of θ_1



Eigenpolytopes of DRGs (Godsil, 1998)

lacksquare $A \in \mathbb{R}^{n \times n}$: the adjacency matrix of G

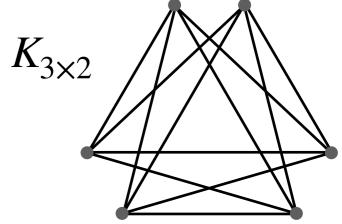
$$A_{uv} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases} \quad (u, v \in V)$$

- \bullet $\theta_0 (=b_0) > \theta_1 > \cdots > \theta_d$: the distinct eigenvalues of A multiplicity 1
- $lackbox{0}$ $E=E_{ heta_1}$: the orthogonal projection onto the eigenspace for $heta_1$

Remark. $||Ev||^2 = m/n \ (v \in V).$

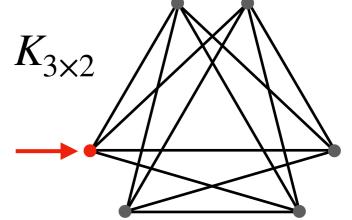
Theorem (Godsil, 1998). G is the 1-skeleton of its eigenpolytope if and only if it is one of the following:

- (a) the Hamming graph H(d,q) $(d \ge 1, q \ge 2)$
- (b) the Johnson graph J(s,d) $(s \ge 2d \ge 2)$ $\int V = 0$ -dim. facets
- (c) the halved *e*-cube $(e \ge 2) \longleftarrow d = \lfloor e/2 \rfloor$
- (d) the Schläfli graph \leftarrow d = 2, b(G) = 3
- (e) the Gosset graph \leftarrow d = 3, b(G) = 3
- (f) the icosahedron \leftarrow d = 3, b(G) = 3
- (g) the dodecahedron \leftarrow d = 4, b(G) = 4
- (h) the complete multipartite graph $K_{r\times 2}$ $(r \ge 2) \longleftarrow d = 2$
- (i) the *n*-cycle C_n $(n \ge 3) \longleftarrow d = \lfloor n/2 \rfloor$



Theorem (Godsil, 1998). G is the 1-skeleton of its eigenpolytope if and only if it is one of the following:

- (a) the Hamming graph H(d,q) $(d \ge 1, q \ge 2)$
- (b) the Johnson graph J(s,d) $(s \ge 2d \ge 2)$ $\begin{cases} V = 0 \text{-dim. facets} \\ E = 1 \text{-dim. facets} \end{cases}$
- (c) the halved *e*-cube $(e \ge 2) \longleftarrow d = \lfloor e/2 \rfloor$
- (d) the Schläfli graph \leftarrow d = 2, b(G) = 3
- (e) the Gosset graph \leftarrow d = 3, b(G) = 3
- (f) the icosahedron \leftarrow d = 3, b(G) = 3
- (g) the dodecahedron \leftarrow d = 4, b(G) = 4
- (h) the complete multipartite graph $K_{r \times 2}$ $(r \ge 2) \longleftarrow d = 2$
- (i) the *n*-cycle C_n $(n \ge 3) \longleftarrow d = \lfloor n/2 \rfloor$



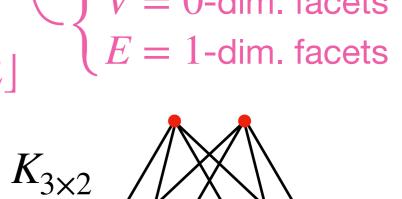
Theorem (Godsil, 1998). G is the 1-skeleton of its eigenpolytope if and only if it is one of the following:

- (a) the Hamming graph H(d,q) $(d \ge 1, q \ge 2)$
- (b) the Johnson graph J(s,d) $(s \ge 2d \ge 2)$ $(S \ge 2d \ge 2)$ (S
- (c) the halved *e*-cube $(e \ge 2) \longleftarrow d = \lfloor e/2 \rfloor$
- (d) the Schläfli graph \leftarrow d = 2, b(G) = 3
- (e) the Gosset graph \leftarrow d = 3, b(G) = 3
- (f) the icosahedron \leftarrow d = 3, b(G) = 3
- (g) the dodecahedron \leftarrow d = 4, b(G) = 4
- (h) the complete multipartite graph $K_{r \times 2}$ $(r \ge 2) \longleftarrow d = 2$
- (i) the *n*-cycle C_n $(n \ge 3) \longleftarrow d = \lfloor n/2 \rfloor$

 $K_{3\times2}$

Theorem (Godsil, 1998). G is the 1-skeleton of its eigenpolytope if and only if it is one of the following:

- (a) the Hamming graph H(d,q) $(d \ge 1, q \ge 2)$
- (b) the Johnson graph J(s,d) $(s \ge 2d \ge 2)$ $\begin{cases} V = 0 \text{-dim. facets} \\ E = 1 \text{-dim. facets} \end{cases}$
- (c) the halved *e*-cube $(e \ge 2) \longleftarrow d = \lfloor e/2 \rfloor$
- (d) the Schläfli graph \leftarrow d = 2, b(G) = 3
- (e) the Gosset graph \leftarrow d = 3, b(G) = 3
- (f) the icosahedron \leftarrow d = 3, b(G) = 3
- (g) the dodecahedron \leftarrow d = 4, b(G) = 4
- (h) the complete multipartite graph $K_{r \times 2}$ $(r \ge 2) \longleftarrow d = 2$
- (i) the *n*-cycle C_n $(n \ge 3) \longleftarrow d = \lfloor n/2 \rfloor$ $b(G) = \lceil n^{1/2} \rceil$



The Hamming and Johnson graphs

• The **Hamming graph** H(d,q) has vertex set

$$V = \{0, 1, ..., q - 1\}^d$$

where

$$(\epsilon_1, \epsilon_2, ..., \epsilon_d) \sim (\epsilon'_1, \epsilon'_2, ..., \epsilon'_d) \stackrel{\text{def}}{\Longleftrightarrow} \#\{i : \epsilon_i \neq \epsilon'_i\} = 1.$$

• The **Johnson graph** J(s,d) has vertex set the set of d-subsets

$$V = \begin{pmatrix} \{1, 2, \dots, s\} \\ d \end{pmatrix},$$

where

$$u \sim v \stackrel{\text{def}}{\Longleftrightarrow} \#(u \cap v) = d - 1.$$

The main result

Theorem (T.-Tokushige, 2025+).

For the Hamming graphs,

$$\left\lfloor \left(1 - 1/q\right)d\right\rfloor < b(H(d, q)) \leqslant \left\lfloor \left(1 - 1/q\right)d + (q+1)/2\right\rfloor.$$

■ For the Johnson graphs, — The upper/lower bounds do not fit here!

$$b(J(s,d)) = d + 1$$
 for $s > d^2$,
 $b(J(2d,d)) = \lceil d/2 \rceil + 1$.

For the halved e-cubes,

$$b(\frac{1}{2}Q_e) = \lceil e/4 \rceil + 1.$$

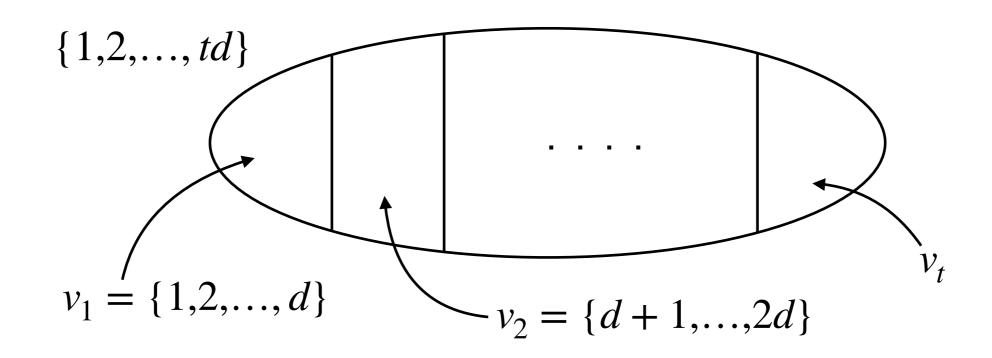
Proving the upper bounds

lacksquare For the Hamming graph H(d,q), let

$$v_1 = (0,0,...,0),$$

 $v_2 = (1,1,...,1),$
 \vdots
 $v_q = (q-1,q-1,...,q-1).$

• For the Johnson graph J(td,d) $(t \ge 2)$ for example, let

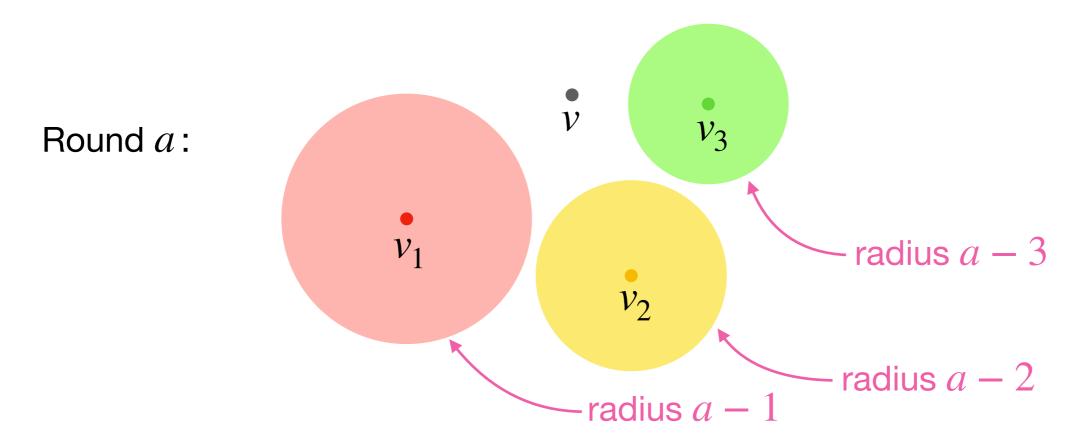


Proving the lower bounds |(1-1/q)d| < b(H(d,q))

$$\left\lfloor \left(1 - 1/q\right)d\right\rfloor < b(H(d, q))$$

- We consider H(d,q). Recall it is the 1-skeleton of the eigenpolytope.
- Let $v_1, v_2, ..., v_a \in V$, where $a = \lfloor (1 1/q) d \rfloor$.
- We show $v_1, v_2, ..., v_a$ is **not** a burning sequence, i.e., for some $v \in V$ we have

$$\partial(v_i, v) > a - i \quad (i = 1, 2, ..., a).$$



$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

- \bullet Pick any $v_{a+1}, v_{a+2}, ..., v_{m-1} \in V$.
- We construct pairs (x_i, F_i) (i = 1, 2, ..., m 1), where $x_i \in F_i$ and F_i is an i-dimensional facet.

Algorithm.

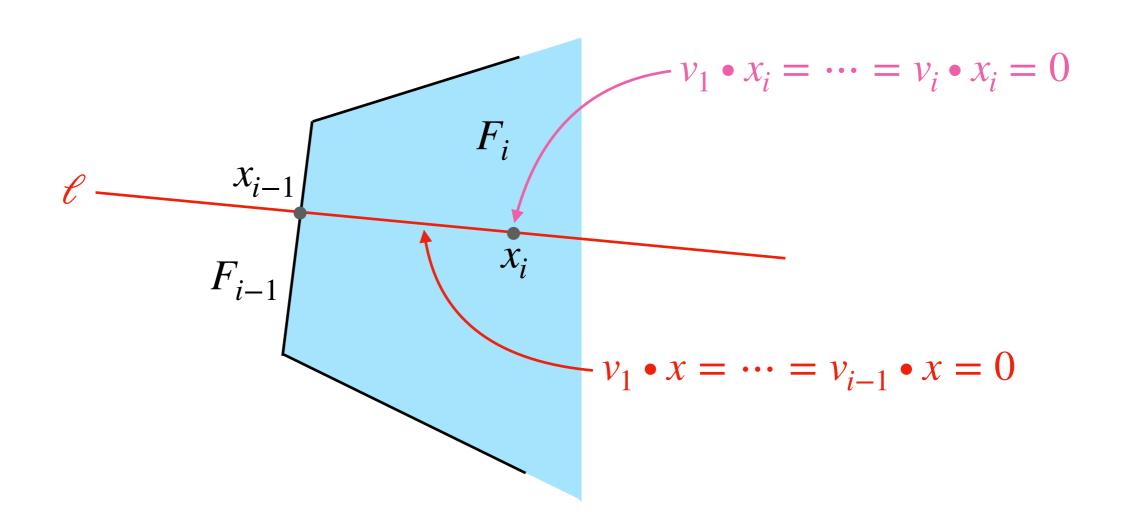
— the origin in \mathbb{R}^m

- \bullet Set $x_m = 0$, and let F_m be the whole eigenpolytope.
- For i = m, m 1, ..., 3, 2, do the following.
 - * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \cdot x = \cdots = v_{i-1} \cdot x = 0$. the standard inner product
 - * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .
- Finally, let v be an endpoint of F_1 s.t. $v_1 \cdot v \leq 0$.

$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

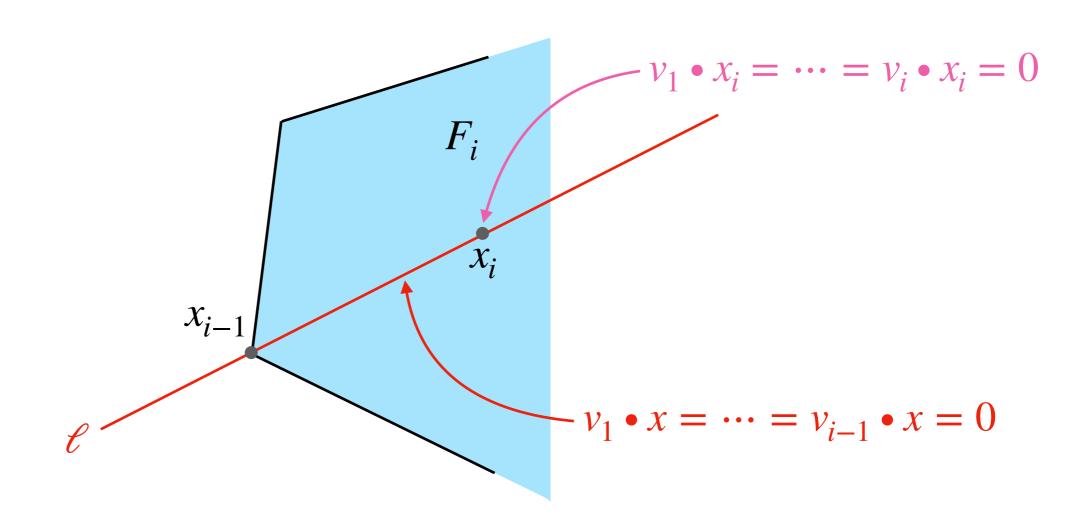
- * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \cdot x = \cdots = v_{i-1} \cdot x = 0$.
- * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .



$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

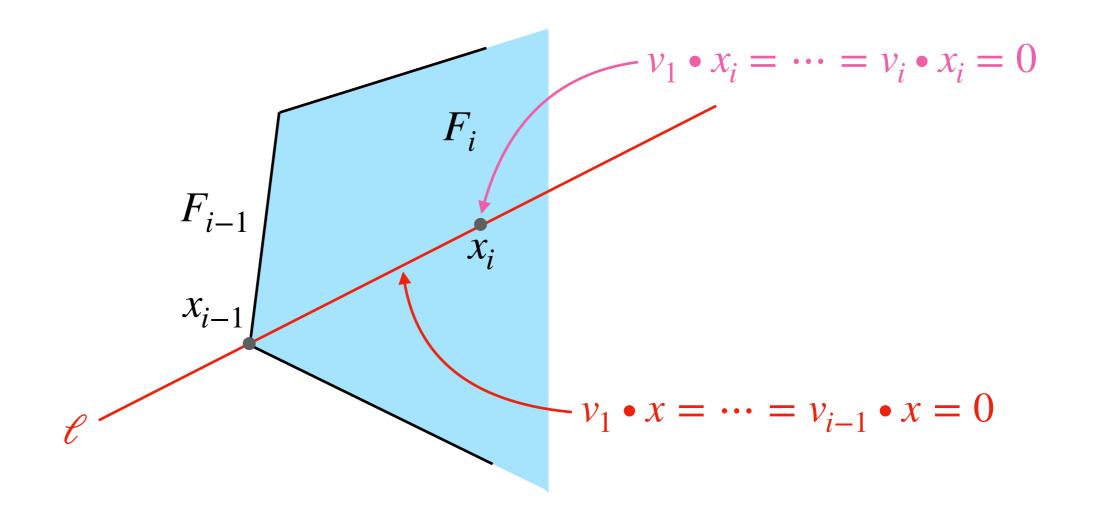
- * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \bullet x = \cdots = v_{i-1} \bullet x = 0$.
- * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .



$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

- * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \bullet x = \cdots = v_{i-1} \bullet x = 0$.
- * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .



$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

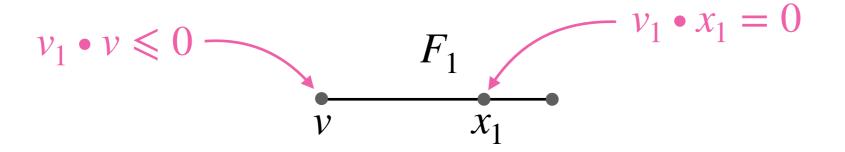
- * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \bullet x = \cdots = v_{i-1} \bullet x = 0$.
- * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .



$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

- * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \bullet x = \cdots = v_{i-1} \bullet x = 0$.
- * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .
- Finally, let v be an endpoint of F_1 s.t. $v_1 \cdot v \leq 0$.

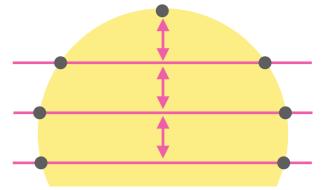


$$a = \lfloor (1 - 1/q)d \rfloor$$

$$\partial(v_i, v) > a - i$$

- * Pick a line ℓ through x_i in aff F_i and in the solution space of $v_1 \bullet x = \cdots = v_{i-1} \bullet x = 0$.
- * Let x_{i-1} be an endpoint of $\mathscr{C} \cap F_i$, and let $F_{i-1} \subset F_i$ be an (i-1)-dimensional facet containing x_{i-1} .
- Finally, let v be an endpoint of F_1 s.t. $v_1 \cdot v \leq 0$.

Proposition. $\partial(v_i, v) > a - i \ (i = 1, 2, ..., a)$. Ingredients.



- (1) The facets correspond to convex subsets (Godsil, 1998).
- (2) These graphs have **classical parameters** with base 1.

The main result

Theorem (T.-Tokushige, 2025+).

For the Hamming graphs,

$$\left\lfloor \left(1 - 1/q\right)d\right\rfloor < b(H(d, q)) \leqslant \left\lfloor \left(1 - 1/q\right)d + (q+1)/2\right\rfloor.$$

● For the Johnson graphs, — The upper/lower bounds do not fit here!

$$b(J(s,d)) = d + 1$$
 for $s > d^2$,
 $b(J(2d,d)) = \lceil d/2 \rceil + 1$.

lacktriangle For the halved e-cubes,

$$b(\frac{1}{2}Q_e) = \lceil e/4 \rceil + 1.$$

Example. $2t < b(H(3t,3)) \le 2t + 2$.

Determine the exact value!!