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Alon’s transmitting problem (1992)

G = (V, E) : afinite connected graph

A sender prepares a sequence of vertices v{, v,, ... € V,
called a burning sequence.

The sender sends a message to v; at round 1.

Every vertex that received the message transmits it to its
neighbors at the next round.

The burning number b(G) : the minimum number of rounds
(over all burning sequences) so that all vertices receive the
message.
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More generally, b(P,) = b(C,) = [n'*]. b(Py) =3




The burning number b(G)

0 : the path-length distance on V
Gv)={ueV:ouv)=i} (veV,i=0,1.2,...)
d = diam(G) : the diameter of G

Lemma. b(G) < d+ 1.

G,(v;) G,(vy) . G,(v)
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® d = diam(G) : the diameter of G

Lemma. b(G) <d+ 1.
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The burning number b(G)

0 : the path-length distance on V
Gv)y=ueV:0u,v)y=i} (veV,i=0,1,2,...)
d = diam(G) : the diameter of G

Lemma. b(G) < d+ 1.

Burning Number Conjecture (Bonato et al., 2016).
b(G) < [n'?], where n = #V.

Example. The BNC holds for P, and C,..

Example. The BNC holds whenever G has a
Hamiltonian path.



The burning number of the hypercubes

Alon (1992) determined the burning number of the
hypercubes.

@ O, = (V, E) : the d-dimensional hypercube
V= {01}

def . ,
(€1,€p, ..., €5) ~ (€1,€y,...,€;) < #li:€ F¢} =1
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The burning number of the hypercubes

@ Alon (1992) determined the burning number of the
hypercubes.

Q, = (V, E) : the d-dimensional hypercube
V=1{0,1}4

def .
@ (€1,6r,....,€) ~(€1,6,...,€;) <= #li:€;. €} =1
1> %2 d 1> %2 d l l

Theorem (Alon, 1992). b(Q,) = [d/2] + 1.
b(Q,) < |[d/2] + 1 : Choose antipodal vertices v, and v,.
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The burning number of the hypercubes

@ Alon (1992) determined the burning number of the
hypercubes.

@ 0, = (V,E) : the d-dimensional hypercube
o V=1{0,1}
def
® (€,€y,...,€5) ~ (€],€r, ..., €)) — #li:e;, e} =1

Theorem (Alon, 1992). b(Q,) = [d/2] + 1.
® b(Q,) < [d/2] + 1: Choose antipodal vertices v; and v,.
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The burning number of the hypercubes

Alon (1992) determined the burning number of the
hypercubes.

Q, = (V, E) : the d-dimensional hypercube
V=1{01)

def . ,
(€1,€p, ..., €5) ~ (€1,€y,...,€;) < #li:€ F¢} =1

Theorem (Alon, 1992). b(Q,) = [d/2] + 1.

b(Q,) < |[d/2] + 1 : Choose antipodal vertices v, and v,.

b(Q,)

WV

d/2] + 1 : Alon used a geometric method.



Distance-regular graphs

We assume G is distance-regular with diameter d.
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Distance-regular graphs

We assume G is distance-regular with diameter d.

G;_ (1) G(u) Gy ()

Examples. @ the hypercubes ), @ the cycles C,

Remark. G is regular with valency b,



Eigenpolytopes of DRGs (Godsil, 1998)

A € R : the adjacency matrix of G

1 fu~v
A = vevV
{O otherwise (4, v )

Oy (= by) > 0, > --- > 0, the distinct eigenvalues of A

E = E91 : the orthogonal projection onto the eigenspace for &,

conv{Ev :v e V} C ER" = R} : the eigenpolytope of G

011
001

101 111

010

OOO.O.HO

100




Eigenpolytopes of DRGs (Godsil, 1998)

A € R : the adjacency matrix of G

1 fu~v
A = veyV
"y {O otherwise (4, v )

Oy (= by) > 0, > --- > 0, : the distinct eigenvalues of A

E = E91 : the orthogonal projection onto the eigenspace for &,

conv{Ev :v e V} C ER" = R} : the eigenpolytope of G




Eigenpolytopes of DRGs (Godsil, 1998)

A € R : the adjacency matrix of G

1 fu~v
A = veyV
"y {O otherwise (4, v )

Oy (= by) > 0, > --- > 0, : the distinct eigenvalues of A

E = EHl : the orthogonal projection onto the eigenspace for &,

conv{Ev :v e V} C ER" = R} : the eigenpolytope of G

Remark. ||EV||> =m/n (v € V).



The 1-skeleton of the eigenpolytope

Theorem (Godsil, 1998).

G is the 1-skeleton of its

eigenpolytope if and only if it is one of the following:
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The Hamming and Johnson graphs

The Hamming graph H(d, g) has vertex set
V=1{01,..qg—-1}

where

def .
(€1,€p,...,€5) ~ (€1,€y,...,€;) < #H{i:€ F €} = 1.

The Johnson graph J(s, d) has vertex set

v ({1,2,...,S}>,
d

def
U~y = #Hunv)=d-—1.

where



The main result

Theorem (I.-Tokushige, 2025+).
For the Hamming graphs,
[(1-1/q)d| < b(H(d, q)) < |(1-1/q)d + (g+1)/2|.
For the Johnson graphs,
b(J(s,d)) =d+1 for s > d~,
b(J(2d,d)) = [d/2] + 1.
For the halved e-cubes,

b(5Q,) = [e/4] + 1.



Proving the upper bounds

For the Hamming graph H(d, qg), let
v, = (0,0,...,0),
v, = (1,1,...,1),

v,=(@—-1l,g—-1,....,9—-1).

For the Johnson graph J(¢d, d) (t = 2) for example, let

{1,2,...,td} — T

ql LN
4
V| = {1,2 ..... d} Vy = {d—|— L,Zd}




Proving the lower bounds .« |(1-1/q)d| < b(H(d, 9))

We consider H(d, g). Recall it is the 1-skeleton of the
eigenpolytope.

Let vi, Vs, ...,v, € V,wherea = |(1 — 1/q)d].

We show v¢, v,, ..., v is not a burning sequence, i.e.,

for some v € V we have
ov,v)>a—1 ((=1,2,...,a).

< e
<
%)

Round a:



Proving the lower bounds oa=|(1-1/q)d]
@I0(v,v) >a—1i
@ Pickany v, {,V,.2,...,V,,_1 € V.

We construct pairs (x;, F;)) (1 = 1,2,...,m — 1), where

x; € I; and F; is an i-dimensional facet.

Algorithm.
Set x,, = 0, and let I, be the whole eigenpolytope.
Fori=m,m—1,...,3,2, do the following.
Pick a line £ through x; in aff F; and in the solution space
of viex =+ =v,_;ox=0.
Let x._; be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.

@ Finally, let v be an endpoint of F| s.t. vie v < 0.



Proving the lower bounds oa=|(1-1/q)d|
@d(v;,v)>a—1i

Pick a line £ through x; in aff F; and in the solution space
of viex =--=vy,_jex=0.
Let x._, be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.




Proving the lower bounds oa=|(1-1/q)d|
@d(v;,v)>a—1i

Pick a line £ through x; in aff F; and in the solution space
of viex =--=vy,_jex=0.
Let x._, be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.




Proving the lower bounds oa=|(1-1/q)d|
@d(v;,v)>a—1i

Pick a line £ through x; in aff F; and in the solution space
of viex =--=vy,_jex=0.
Let x._, be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.




Proving the lower bounds oa=|(1-1/q)d|
@d(v;,v)>a—1i

Pick a line £ through x; in aff F; and in the solution space
of viex =--=vy,_jex=0.
Let x._, be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.




Proving the lower bounds oa=|(1-1/q)d|
@d(v;,v)>a—1i

Pick a line £ through x; in aff F; and in the solution space
of viex =--=vy,_jex=0.
Let x._, be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.
Finally, let v be an endpoint of /| s.t. v;e v < 0.
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Proving the lower bounds oa=|(1-1/q)d|
@d(v;,v)>a—1i

Pick a line £ through x; in aff F; and in the solution space
of viex =--=vy,_jex=0.
Let x._, be an endpoint of £ N F;, and let F;_; C F; be

an (1 — 1)-dimensional facet containing x;_;.

Finally, let v be an endpoint of I s.t. vie v < 0.

Proposition. d(v,v) >a—i (i=1,2,...,a). :

Ingredients. . .

(1) The facets correspond to convex subsets (Godsil, 1998).
(2) These graphs have classical parameters with base 1.



The main result

Theorem (I.-Tokushige, 2025+).
For the Hamming graphs,
[(1-1/q)d| < b(H(d, q)) < |(1-1/q)d + (g+1)/2|.
For the Johnson graphs,
b(J(s,d)) =d+1 for s > d~,
b(J(2d,d)) = [d/2] + 1.
For the halved e-cubes,

b(5Q,) = [e/4] + 1.

Example. 2t < b(H(3t,3)) < 2t + 2.



