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 : a finite connected graph

A sender prepares a sequence of vertices , 
called a burning sequence.

The sender sends a message to  at round .

Every vertex that received the message transmits it to its 
neighbors at the next round.

The burning number  : the minimum number of rounds 
(over all burning sequences) so that all vertices receive the 
message.

G = (V, E)
v1, v2, … ∈ V

vi i

b(G)

Alon’s transmitting problem (1992)
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b(P9) = 3More generally, .b(Pn) = b(Cn) = ⌈n1/2⌉

Round 3:

 : a finite connected graph

A sender prepares a sequence of vertices , 
called a burning sequence.

The sender sends a message to  at round .

Every vertex that received the message transmits it to its 
neighbors at the next round.

The burning number  : the minimum number of rounds 
(over all burning sequences) so that all vertices receive the 
message.

G = (V, E)
v1, v2, … ∈ V

vi i

b(G)

v1 v2 v3

path cycle

Alon’s transmitting problem (1992)



The burning number b(G)

v1

 : the path-length distance on 

   


 : the diameter of 

∂ V
Gi(v) = {u ∈ V : ∂(u, v) = i} (v ∈ V, i = 0,1,2,…)
d = diam(G) G

Lemma.  .b(G) ⩽ d + 1

G1(v1) G2(v1) Gd(v1)
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. . .
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The burning number b(G)
 : the path-length distance on 


   

 : the diameter of 

∂ V
Gi(v) = {u ∈ V : ∂(u, v) = i} (v ∈ V, i = 0,1,2,…)
d = diam(G) G

Lemma.  .b(G) ⩽ d + 1

Burning Number Conjecture (Bonato et al., 2016).

, where .b(G) ⩽ ⌈n1/2⌉ n = #V

Example.  The BNC holds for  and .Pn Cn

Example.  The BNC holds whenever  has a 
Hamiltonian path.

G



The burning number of the hypercubes
Alon (1992) determined the burning number of the 
hypercubes.


 : the -dimensional hypercube




    

Qd = (V, E) d
V = {0,1}d

(ϵ1, ϵ2, …, ϵd) ∼ (ϵ′￼1, ϵ′￼2, …, ϵ′￼d)
def

⟺ #{i : ϵi ≠ ϵ′￼i} = 1
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The burning number of the hypercubes

Theorem (Alon, 1992).   .b(Qd) = ⌈d/2⌉ + 1
 : Choose antipodal vertices  and .b(Qd) ⩽ ⌈d/2⌉ + 1 v1 v2

v1 v2
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The burning number of the hypercubes

 : Choose antipodal vertices  and .b(Qd) ⩽ ⌈d/2⌉ + 1 v1 v2
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Round 4:
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 : the -dimensional hypercube




    

Qd = (V, E) d
V = {0,1}d

(ϵ1, ϵ2, …, ϵd) ∼ (ϵ′￼1, ϵ′￼2, …, ϵ′￼d)
def

⟺ #{i : ϵi ≠ ϵ′￼i} = 1

Theorem (Alon, 1992).   .b(Qd) = ⌈d/2⌉ + 1



The burning number of the hypercubes

 : Choose antipodal vertices  and .

 : Alon used a geometric method.

b(Qd) ⩽ ⌈d/2⌉ + 1 v1 v2

b(Qd) ⩾ ⌈d/2⌉ + 1

Alon (1992) determined the burning number of the 
hypercubes.


 : the -dimensional hypercube




    

Qd = (V, E) d
V = {0,1}d

(ϵ1, ϵ2, …, ϵd) ∼ (ϵ′￼1, ϵ′￼2, …, ϵ′￼d)
def

⟺ #{i : ϵi ≠ ϵ′￼i} = 1

Theorem (Alon, 1992).   .b(Qd) = ⌈d/2⌉ + 1

Beck-Fiala (1981)
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Distance-regular graphs

We assume  is distance-regular with diameter .G d

u

Gi−1(u) Gi(u) Gi+1(u)

v

Examples.

Remark.   is regular with valency .G b0

the hypercubes Qd the cycles Cn
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0 otherwise
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Theorem (Godsil, 1998).   is the -skeleton of its 
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(b) the Johnson graph   

(c) the halved -cube  

(d) the Schläfli graph

(e) the Gosset graph

(f) the icosahedron

(g) the dodecahedron

(h) the complete multipartite graph   


(i) the -cycle   

G 1

H(d, q) (d ⩾ 1, q ⩾ 2)
J(s, d) (s ⩾ 2d ⩾ 2)

e (e ⩾ 2)

Kr×2 (r ⩾ 2)
n Cn (n ⩾ 3)
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K3×2
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The Hamming and Johnson graphs

The Hamming graph  has vertex set 

                            ,  
where 
      .


The Johnson graph  has vertex set 

                           ,  
where 
                        .

H(d, q)

V = {0,1,…, q − 1}d

(ϵ1, ϵ2, …, ϵd) ∼ (ϵ′￼1, ϵ′￼2, …, ϵ′￼d)
def

⟺ #{i : ϵi ≠ ϵ′￼i} = 1

J(s, d)

V = ({1,2,…, s}
d )

u ∼ v
def

⟺ #(u ∩ v) = d − 1

the set of -subsetsd



The main result

For the Hamming graphs, 

    .


For the Johnson graphs, 

                          for  , 

                        .


For the halved -cubes, 

                               .

⌊(1−1/q)d⌋< b(H(d, q)) ⩽ ⌊(1−1/q)d + (q+1)/2⌋

b(J(s, d)) = d + 1 s > d2

b(J(2d, d)) = ⌈d/2⌉ + 1
e

b( 1
2 Qe) = ⌈e/4⌉ + 1

Theorem (T.-Tokushige, 2025+).

The upper/lower bounds do not fit here!



Proving the upper bounds

For the Hamming graph , let 

                               ,  
                               , 
                                     
                               .


For the Johnson graph   for example, let

H(d, q)
v1 = (0,0,…,0)
v2 = (1,1,…,1)

⋮
vq = (q − 1,q − 1,…, q − 1)

J(td, d) (t ⩾ 2)

{1,2,…, td}

v1 = {1,2,…, d} v2 = {d + 1,…,2d}

.  .  .  .

vt



Proving the lower bounds

We consider . Recall it is the -skeleton of the 
eigenpolytope.

Let , where .

We show  is not a burning sequence, i.e., 
for some  we have 
                        .

H(d, q) 1

v1, v2, …, va ∈ V a = ⌊(1 − 1/q) d⌋
v1, v2, …, va
v ∈ V

∂(vi, v) > a − i (i = 1,2,…, a)

v1

⌊(1−1/q)d⌋< b(H(d, q))

radius a − 1

Round  :a

radius a − 2

v2

v3
v

radius a − 3




a = ⌊
∂(vi, v) > a − i

(1−1/q)d⌋Proving the lower bounds

Pick any .


We construct pairs  , where 
  and   is an -dimensional facet.

va+1, va+2, …, vm−1 ∈ V
(xi, Fi) (i = 1,2,…, m − 1)

xi ∈ Fi Fi i

Algorithm.
Set , and let  be the whole eigenpolytope.

For , do the following.

xm = 0 Fm
i = m, m − 1,…,3,2

the origin in ℝm

Pick a line  through  in  and in the solution space 
of .

Let  be an endpoint of , and let  be 
an -dimensional facet containing .

ℓ xi aff Fi
v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

Finally, let  be an endpoint of  s.t. .v F1 v1∙ v ⩽ 0

the standard inner product



Proving the lower bounds

Fi

xi

v1 ∙ xi = ⋯ = vi ∙ xi = 0

ℓ

v1 ∙ x = ⋯ = vi−1 ∙ x = 0

xi−1


a = ⌊
∂(vi, v) > a − i

(1−1/q)d⌋

Pick a line  through  in  and in the solution space 
of .

Let  be an endpoint of , and let  be 
an -dimensional facet containing .

ℓ xi aff Fi
v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

Fi−1
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Fi

xi

ℓ v1 ∙ x = ⋯ = vi−1 ∙ x = 0

xi−1
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v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

v1 ∙ xi = ⋯ = vi ∙ xi = 0
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of .

Let  be an endpoint of , and let  be 
an -dimensional facet containing .

ℓ xi aff Fi
v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

Fi−1

v1 ∙ xi = ⋯ = vi ∙ xi = 0



Proving the lower bounds

Fi

xi

ℓ v1 ∙ x = ⋯ = vi−1 ∙ x = 0

xi−1


a = ⌊
∂(vi, v) > a − i

(1−1/q)d⌋

Pick a line  through  in  and in the solution space 
of .

Let  be an endpoint of , and let  be 
an -dimensional facet containing .

ℓ xi aff Fi
v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

v1 ∙ xi = ⋯ = vi ∙ xi = 0

Fi−1



Proving the lower bounds 
a = ⌊
∂(vi, v) > a − i

(1−1/q)d⌋

Pick a line  through  in  and in the solution space 
of .

Let  be an endpoint of , and let  be 
an -dimensional facet containing .

ℓ xi aff Fi
v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

Finally, let  be an endpoint of  s.t. .v F1 v1∙ v ⩽ 0

F1

x1

v1 ∙ x1 = 0

v

v1 ∙ v ⩽ 0



Proving the lower bounds 
a = ⌊
∂(vi, v) > a − i

(1−1/q)d⌋

Pick a line  through  in  and in the solution space 
of .

Let  be an endpoint of , and let  be 
an -dimensional facet containing .

ℓ xi aff Fi
v1∙ x = ⋯ = vi−1∙ x = 0
xi−1 ℓ ∩ Fi Fi−1 ⊂ Fi

(i − 1) xi−1

Finally, let  be an endpoint of  s.t. .v F1 v1∙ v ⩽ 0

Proposition.    .∂(vi, v) > a − i (i = 1,2,…, a)
Ingredients.
(1) The facets correspond to convex subsets (Godsil, 1998).

(2) These graphs have classical parameters with base .1



The main result

For the Hamming graphs, 

    .


For the Johnson graphs, 

                          for  , 

                        .


For the halved -cubes, 

                               .

⌊(1−1/q)d⌋< b(H(d, q)) ⩽ ⌊(1−1/q)d + (q+1)/2⌋

b(J(s, d)) = d + 1 s > d2

b(J(2d, d)) = ⌈d/2⌉ + 1
e

b( 1
2 Qe) = ⌈e/4⌉ + 1

Theorem (T.-Tokushige, 2025+).

The upper/lower bounds do not fit here!

Example.  .2t < b(H(3t,3)) ⩽ 2t + 2

Determine the exact value!!


