A doubly non-negative relaxation
for modularity density maximization

Yoichi lzunaga® Tomomi Matsui* Yoshitsugu Yamamoto!

TUniversity of Tsukuba
fTokyo Institute of Technology

November 22, 2015

/25

Introduction

Formulations
Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)
Computational experiment

Conclusion

2/25

Introduction

3/25

Introduction (Community detection)

Community detection is grouping nodes of a graph into several parts:

OOO

)
oO

OOO

» each part (community) consists of tightly connected nodes

» communities are loosely connected each other

Introduction (Quality measure)

Ratio cut (Cheng and Wei'91)

Normalized cut (Shi and Malik '00)

Min-max cut (Ding et al.’01)

Modularity (Newman and Girvan '04)
» degeneracy

» resolution limit (Fortunato and Barthelemy '07)
» NP-hard (Brandes et al.'08)

25

Introduction (Quality measure)

Resolution limit

leaves small communities not identified and hidden inside larger ones

/25

Introduction (Quality measure)

Resolution limit

leaves small communities not identified and hidden inside larger ones

=Y
s
@

/25

Introduction (Quality measure)

Resolution limit

leaves small communities not identified and hidden inside larger ones

/25

Introduction (Quality measure)

Ratio cut (Cheng and Wei'91)

Normalized cut (Shi and Malik '00)

Min-max cut (Ding et al.’01)

Modularity (Newman and Girvan '04)
» degeneracy

» resolution limit (Fortunato and Barthelemy '07)
» NP-hard (Brandes et al.'08)

Modularity density (Li et al.'08)
» avoids the resolution limit
» NP-hard ?

5/25

Introduction (Modularity & Modularity density)

» undirected graph G = (V,E) (n=|V],m=|E|)

» B(C,C")={{i,j}eFE|ieC,jel }for C,C'CV
(when C = C’, we abbreviate it to E(C'))

» II : a partition of the node set V'

Modularity

M@ = > <‘Ef>\ _ (20/6H5<C,0')|>)

Cell

Modularity density

o) - 3 (HEO= ZeanlB(C.C1)

Gat cl

/25

Modularity density maximization

(2 Yiev ZjeV WijTipTip — I icy dixip)
e
peT ZieV .’Ifip
s.t. Z{Eip =1 (Z € V)
(P) oo
inp >1 (pel)
eV
zip € {0,1} (teV,pel).
> T={1,...,t} : index set of communities (¢ is unknown a priori)
> A= (aij)ijev : adjacency matrix of G

v

d; : degree of node i (ie., d; = >jev ij)

> x;, : decision variable

N :{1 (ieCp)
T (4G

/25

Introduction (Overview)

Costa'15

» formulated the problem as Mixed-Integer-Linear-Programming
(MILP)

» made use of the McCormick inequalities
= need to solve an auxiliary problem

> solved the instances up to n = 40 by branch-and-bound alg.
Izunaga, Matsui, and Yamamoto

» show that the problem can be modeled as 0-1SDP
= does not require the number of communities ¢

> solve a relaxation problem to obtain an upper bound

> develop a heuristics to obtain a lower bound

Formulations

9/25

Mixed-Integer-Linear-Programming (MILP)

MILP formulation

max. Z Ofp
pET
s.t. > wp=1 (ieV)
pET
> wp>1 (peT)
eV
Yijp < Tip; Yijp < Tjp ({i,jy € E,peT)
D ve <4 D yip— D dimip (peT)
i€V {i,j}€E i€V
Lazip S Yip S Uaxip (’L E V,p € T)
ap —Ua(1 —2ip) <vip <ap— La(l—2ip) (1€V,peT)
z;p € {0,1} (ieV,peT)
Yijp € R ({i,jt e E,peT)
LagapSU(x (pET)
’YipeR (’L'EV,]?GT).

10/25

0-1 semidefinite programming (0-1SDP)

St={YeR”|Y"=Y,VdeR",d'Yd>0}
N, ={Y eR™™ | YT =Y, Vi,jy; >0}

A = (aij)ijev

D = Diag(ds,...,d,) € R™*"

er=(1,...,1)T eR*

Introducing a matrix X € {0,1}"**, we have the following problem:

Matrix representation

inpzl(ie\/) & Xer =e,

max. Tr((24—D)Z) pel
s.t. Xe;, =€, . T
(P) XTen > e, ;/xzp >1 (p € T) < X e, 2>e

Z=X(XTX)"1xT
26 @ (0,12,

11/25

» (X, Z) is feasible for the problem (P)
= Ze,=e,, Z22=7 7N,

Matrix representation 0-1SDP formulation

max. Tr((24 - D)Z2) max. Tr((2A — D)Z2)
s.t. Xer =e€, (P) s.t. Ze, = e,
(P) XTen Zet Z2:Z
Z=XXTXxX)"'xT Z eN,.
X e {0, 1}

For any feasible solution Z of (P), we can construct a feasible
solution X which satisfies Z = X (X TX)71X T

= the problem (P) is equivalent to (P)

12/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N _{1 (i € T,)
Tl0 (¢

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N :{1 (i € T,) i
0 (¢’

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N :{1 (i € T,) .
Tl (¢’

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

2oy = 1 (ieTp) g
0 (i¢Zy)’ "E =
then X is feasible for (P) and Z = X(X " X)7*X . N "

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N _{1 (i € T,)
Tl0 (¢

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N _{1 (i € T,)
Tl0 (¢

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N _{1 (i € T,)
Tl0 (¢

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

sketch of proof

72 =7 = Z=0= di; eV, Zi1iy =max{zij |’L,j€V}
Let Z; = {] eV | Ziyj > 0}, then VZ,_] & Il, Zij = 1/|Il|
By using an appropriate permutation matrix P, we obtain

Zz, O

P'ZpP =
(% 5

), whereZ:V\Il.

The sub-matrix Zz, satisfies that Z7 e = e, Z%l =Z, Zz, € N.
Repeating the process described above, we can convert Z to a block
diagonal matrix P" ZP = Diag(Zz,, ..., 2z,).

We construct a matrix X = (z;;,) such that

N _{1 (i € T,)
Tl0 (¢

then X is feasible for (P) and Z = X(X " X)7*X .

13/25

0-1 semidefinite programming (0-1SDP)

0-1SDP formulation

» Laplacian:
= +
max. Tr((2A—D)Z) L2— D—-AecS)
(p) s.t. Ze'I‘L = en > Z : Z
%=y = Vi, A\ €{0,1}.
7 e N, (A\ @ eigenvalue of Z)
n-

» the objective function is linear with respect to Z

» the idempotence constraint makes the problem difficult

1 -2 0
D2A=[-2 2 —2|¢s
0 -2 1

14 /25

0-1 semidefinite programming (0-1SDP)

0-1SDP formulation

> Laplacian:
L=D—-AeS;

» 72 =7
= Vi, \ € {O, 1}.
(A; = eigenvalue of Z)

max. Tr((2A—D)Z2)

p s.t. Ze, = ey
(P) e
Z e Ny

» the objective function is linear with respect to Z

» the idempotence constraint makes the problem difficult
= relax the constraint Z2 = Z to a more tractable constraint

1 -2 0
D2A=[-2 2 —2|¢Sf
0 -2 1

14 /25

Relaxation problem (Upper bounding)

15/25

Doubly Non-Negative relaxation

» DNN relaxation
= provides a tight bound for combinatorial optimization problems

0-1SDP formulation DNN relaxation

max. Tr((24—D)2) max. Tr((24—-D)Z2)
(P) s.t. Ze, = e, (DNN) s.t. Ze, = e,
Z2=Z Z e SFNN,.
Z € Ny.

> the interior-point method solves the problem over a symmetric cone
efficiently

> we cannot directly apply the interior-point method to solve (DNN)
since doubly non-negative cone is not symmetric

Z 0

+ +
ZeSInN, & <O Diag(vec(z>)) SO

16 /25

Valid inequality

The following inequalities are valid for (P)

Zii = Zij (Z,] S V)
DNN relaxation DNN with valid inequalities

max. Tr((24A—-D)Z) max. Tr((2A - D)Z)

(DNN) s.t. Zen = €n (m) s.t. Zen =€n
Z e SHNN,. zii 2 2ij (1,] € V)
Z € SFNN,.

17/25

Heuristics based on the spectrum (Lower bounding)

18/25

Permutation based on spectrum
Z* : solution of the relaxation problem

> 1=X > X >--->), >0: eigenvalues of Z*
> u,; € R" : eigenvector corresponding to \;

Permuting the rows and columns of Z* consistent with the
decreasing order of values of elements of us, we have

Figure: Original matrix

19/25

Permutation based on spectrum
Z* : solution of the relaxation problem

> 1=X > X >--->), >0: eigenvalues of Z*
> u,; € R" : eigenvector corresponding to \;

Permuting the rows and columns of Z* consistent with the
decreasing order of values of elements of us, we have

Figure: Original matrix Figure: Permuted matrix
19/25

V : sequence consistent with the decreasing order of uo
(we write V' = [1...n] for the sake of simplicity)

000000000
¥ l ¢
22 ik %j:_ﬂ 1_)2"=’“ G o k.0 of V with k < ¢

> u(s) : the maximum value that is achieved by partitioning of [1...s]
into several consecutive subsequences
(‘assume 1(0) = 0 for notational convenience)

Recursive equation

> q(k,) =

w(s) = max{ (k) +q(k+1,8) | ke {0,1,...,s—1}}.

20/25

V : sequence consistent with the decreasing order of uo
(we write V' = [1...n] for the sake of simplicity)

000000000
¥ l ¢
22 ik %j:_ﬂ 1_)2"=’“ G o k.0 of V with k < ¢

> u(s) : the maximum value that is achieved by partitioning of [1...s]
into several consecutive subsequences
(‘assume 1(0) = 0 for notational convenience)

Recursive equation

> q(k,) =

w(s) = max{ (k) +q(k+1,8) | ke {0,1,...,s—1}}.

20/25

V : sequence consistent with the decreasing order of uo
(we write V' = [1...n] for the sake of simplicity)

‘N N ICHCICHCNCK
¥ l ¢
2 . g Qi — . dl o
ik 2k Uid ~ Lz for k, ¢ of V with k < ¢
(—(k—1)

> u(s) : the maximum value that is achieved by partitioning of [1...s]
into several consecutive subsequences
(‘assume 1(0) = 0 for notational convenience)

Recursive equation

> q(k,0) =

w(s) = max{ (k) +q(k+1,8) | ke {0,1,...,s—1}}.

20/25

V : sequence consistent with the decreasing order of uo
(we write V' = [1...n] for the sake of simplicity)

2 lf_ e._ A5 — lf_ dl —
ik Ljok G5~ 2ich for k, ¢ of V with k < ¢
(—(k—1)

> u(s) : the maximum value that is achieved by partitioning of [1...s]
into several consecutive subsequences
(‘assume 1(0) = 0 for notational convenience)

> q(k,0) =

Recursive equation

w(s) = max{ (k) +q(k+1,8) | ke {0,1,...,s—1}}.

= u(l) =q(1,1)
1(2) = max{q(1,2), p(1)+q(2,2)}
M(3) = max{ Q(l’ 3)? :u(l) =+ Q(2’ 3)7 /1’(2) + Q(37 3) } T

20/25

Computational experiment

21/25

Computational experiment

» Computational environment
CPU : Intel Core i7 3.70 GHz
Memory : 32.0GB
SDP Solver : SeDuMi 1.2
MILP Solver : Gurobi6.0.0

» The instances we tested :

ID name n m t OPT
1 Strike 24 38 4 8.8611
2 Karate 34 78 3 7.8451
3 Mexico 35 117 3 8.7180
4 Sawmill 36 62 4 8.6233
5 Dolphins 62 159 5 12.1252!
6 Books 105 441 7 21.9652!

the best lower bound reported in Costa et al.'15

Table: Comparison of obtained lower and upper bounds

(DNN) (DNN) (MILP)

ID UB B UB LB UB B

1 95808 8.8611 93049 8.8611 8.8611 8.8611
2 8.9548 7.8424 8.4141 7.8451 7.8451 7.8451
3 10.3151 8.5580 9.9570 85227 87180 8.7180
4 10.5048 7.0486 10.0311 7.3587 8.6223 8.6233
5 15.0218 9.8286 143552 11.4610 171252 12.1252
6 26.5387 20.2470 247749 20.3150 56.8739 21.0815

Table: Comparison of computational time in seconds

ID (DNN) (DNN) (MILP)
1 1.05 3.54 0.50
2 5.83 36.04 0.74
3 7.64 43.48 7.84
4 7.75 54.21 6.10
5 316.61 1681.81 oT?
6 4626.11 60437.45 oT?

2

more than 10,000 seconds

23 /25

Conclusion

24 /25

Conclusion

Conclusion

> We proved the equivalence between the modularity density
maximization and 0-1SDP

> obtained a tight upper bound by DNN relaxation
» developed a heuristics to obtain a lower bound

However, there is no theoretical validity of using the second largest
eigenvector. Here still remains room for further research.

Thank you for your attention.

25 /25

Conic programming

» K : a nonempty closed convex cone

> (-,-) : an inner product

> K* : the dual cone of K, ie.,, K*={x |Vy e K, (z,y) >0}
» A:R™ — R™ : a linear operator

> A* : the adjoint operator of A4, i.e., (Az,y) = (x, A*y)

Primal Dual |

min. (¢, x) max. (b,y)
s.t. Az =b,x € K. s.t. c— Ay e K.

Roughly speaking, K is called a symmetric cone if £* = K.

> symmetric cones :
non-negative orthant R’} , semidefinite cone S,*{, second-order cone, etc.

26/25

Conic programming

> Copositive cone C, = {Y e R™*" | YT =Y, Vd € R?,d"Yd >0}
> Completely positive cone C; = conv({yy' |y € R} })
» Doubly non-negative cone S;” NN,

> (STNMN)* =St +Na
> CLCSINN,.CSHFCSTF+N,.CCn
> Ci=S'NN,CSFCSH+ N, =Cp, forn<4

Strong results on C,, C;,

» the maximum clique number:

min{a € N|a(E - A)— E €C, } where E=ee .

> non-convex quadratic programming:

min{ Tr(QX) | Tr(EX) =1, X €}, } where E = ee

27/25

	Introduction
	Formulations
	Relaxation problem (Upper bounding)
	Heuristics based on the spectrum (Lower bounding)
	Computational experiment
	Conclusion

